A self-organizing map for analysis of high-dimensional feature spaces with clusters of highly differing feature density

نویسندگان

  • Stefan Schünemann
  • Bernd Michaelis
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps

Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...

متن کامل

A hierarchical self-organizing feature map for analysis of not well separable clusters of different feature density

This paper introduces a hierarchical Self-Organizing Feature Map (SOFM). The partial maps consist of individual numbers of neurons, which makes a cluster analysis with di erent degrees of resolution possible. A de nition of a special Mahalanobis space of the data set during the learning improves the properties concerning clusters with low density.

متن کامل

Uncovering the Hierarchical Structure of Text Archives by Using an Unsupervised Neural Network with Adaptive Architecture

Discovering the inherent structure in data has become one of the major challenges in data mining applications. It requires the development of stable and adaptive models that are capable of handling the typically very high-dimensional feature spaces. In this paper we present the Growing Hierarchical Self-Organizing Map (GH-SOM), a neural network model based on the self-organizing map. The main f...

متن کامل

The Time Adaptive Self Organizing Map for Distribution Estimation

The feature map represented by the set of weight vectors of the basic SOM (Self-Organizing Map) provides a good approximation to the input space from which the sample vectors come. But the timedecreasing learning rate and neighborhood function of the basic SOM algorithm reduce its capability to adapt weights for a varied environment. In dealing with non-stationary input distributions and changi...

متن کامل

Towards Growing Self-Organizing Neural Networks with Fixed Dimensionality

The competitive learning is an adaptive process in which the neurons in a neural network gradually become sensitive to different input pattern clusters. The basic idea behind the Kohonen’s Self-Organizing Feature Maps (SOFM) is competitive learning. SOFM can generate mappings from high-dimensional signal spaces to lower dimensional topological structures. The main features of this kind of mappi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996